21 research outputs found

    Efficient analysis and representation of geophysical processes using localized spherical basis functions

    Full text link
    While many geological and geophysical processes such as the melting of icecaps, the magnetic expression of bodies emplaced in the Earth's crust, or the surface displacement remaining after large earthquakes are spatially localized, many of these naturally admit spectral representations, or they may need to be extracted from data collected globally, e.g. by satellites that circumnavigate the Earth. Wavelets are often used to study such nonstationary processes. On the sphere, however, many of the known constructions are somewhat limited. And in particular, the notion of `dilation' is hard to reconcile with the concept of a geological region with fixed boundaries being responsible for generating the signals to be analyzed. Here, we build on our previous work on localized spherical analysis using an approach that is firmly rooted in spherical harmonics. We construct, by quadratic optimization, a set of bandlimited functions that have the majority of their energy concentrated in an arbitrary subdomain of the unit sphere. The `spherical Slepian basis' that results provides a convenient way for the analysis and representation of geophysical signals, as we show by example. We highlight the connections to sparsity by showing that many geophysical processes are sparse in the Slepian basis.Comment: To appear in the Proceedings of the SPIE, as part of the Wavelets XIII conference in San Diego, August 200

    A Method for Calibration of the Local Magnitude Scale Based on Relative Spectral Amplitudes, and Application to the San Juan Bautista, California, Area

    Get PDF
    We develop and use a spectral empirical Green’s function approach to estimate the relative source amplitudes of earthquakes near San Juan Bautista, California. We isolate the source amplitudes from path effects by comparing the recorded spectra of pairs of events with similar location and focal mechanism, without computing the path effect. With this method, we estimate the relative moments of 1600 M 1.5–4 local earthquakes, and we use these moments to recalibrate the duration magnitude scale in this region. The estimated moments of these small earthquakes increase with catalog magnitude M_D roughly proportionally to 10^(1.1M_D), slightly more slowly than a moment‐magnitude scaling of 10^(1.5M_w). This more accurate magnitude scaling can be used in analyses of the local earthquakes, such as comparisons between the seismic moments and geodetic observations

    A Method for Calibration of the Local Magnitude Scale Based on Relative Spectral Amplitudes, and Application to the San Juan Bautista, California, Area

    Get PDF
    We develop and use a spectral empirical Green’s function approach to estimate the relative source amplitudes of earthquakes near San Juan Bautista, California. We isolate the source amplitudes from path effects by comparing the recorded spectra of pairs of events with similar location and focal mechanism, without computing the path effect. With this method, we estimate the relative moments of 1600 M 1.5–4 local earthquakes, and we use these moments to recalibrate the duration magnitude scale in this region. The estimated moments of these small earthquakes increase with catalog magnitude M_D roughly proportionally to 10^(1.1M_D), slightly more slowly than a moment‐magnitude scaling of 10^(1.5M_w). This more accurate magnitude scaling can be used in analyses of the local earthquakes, such as comparisons between the seismic moments and geodetic observations

    Evolutionary Hypotheses and Moral Skepticism

    Get PDF
    Proponents of evolutionary debunking arguments aim to show that certain genealogical explanations of our moral faculties, if true, undermine our claim to moral knowledge. Criticisms of these arguments generally take the debunker’s genealogical explanation for granted. The task of the anti-debunker is thought to be that of reconciling the (supposed) truth of this hypothesis with moral knowledge. In this paper, I shift the critical focus instead to the debunker’s empirical hypothesis and argue that the skeptical strength of an evolutionary debunking argument is dependent upon the evidence for that hypothesis—evidence which, upon further inspection, proves far from compelling. Following that, however, I suggest that the same considerations which spell trouble for the empirical hypotheses of traditional debunking arguments can also be taken to give rise to an alternative—and better supported—style of debunking argument

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Linking the scaling of tremor and slow slip near Parkfield, CA

    No full text
    There has been much debate about the fault zone processes that generate slow earthquakes, including tremor and slow slip. Indeed, we still debate whether tremor and slow slip are generated by the same process operating at different scales or by two distinct processes. Here we investigate tremor scaling near Parkfield, California; we examine how rupture duration scales with moment. We thoroughly search for and detect the low frequency earthquakes (LFEs) that constitute tremor and robustly estimate their durations. Our results show varying durations (0.1-0.6 s) and spectra for LFEs at the same location. These variations confirm a common assumption, that LFEs' observed low frequency contents are due to source processes, not path effects. The LFEs' amplitude and spectra variations are consistent with a linear moment-duration scaling: the same scaling observed among slow slip events. The similar scaling suggests that tremor and slow slip events are governed by the same fault zone process and that when we attempt to identify the process creating slow earthquakes, we should focus on processes which allow higher slip rates on smaller faults

    Are creep events big? Estimations of along-strike rupture lengths

    No full text
    Segments of many faults are observed to slip aseismically at the surface. On the central segment of the San Andreas Fault, aseismic slip accumulates largely in creep events: few mm bursts of slip which occur every few weeks to months. But even though we have observed creep events worldwide since the 1960s, we still do not know how big most events are or which forces drive them. To address this uncertainty, we systematically identify creep events along the central San Andreas Fault and determine their along-strike rupture extents. We first use cross-correlation and visual inspection to identify events at individual creepmeters. With data from 18 USGS creepmeters, we identify 2120 records of creep events between 1985 and 2020. We then search for slip that is closely timed across multiple creepmeters. We identify 306 instances of closely timed slip, which could indicate 306 creep events that rupture multiple creepmeter locations. Through visual inspection and statistical analysis of timing, we identify a variety of creep event types, including single-creepmeter events, small (10 km) events, and events that rupture multiple fault strands. The existence of many large (urn:x-wiley:21699313:media:jgrb55423:jgrb55423-math-0001few-km) events suggests that creep events are not produced by small, rainfall-associated perturbations; they are more likely driven by complex or heterogeneous frictional weakening and they may provide a window into the dynamics of a larger scale slip on the San Andreas Fault

    Stresses in the lunar interior: insights from slip directions in the A01 deep moonquake nest

    No full text
    We probe the present-day stresses in the lunar interior by examining the slip directions of moonquakes in the A01 nest. In this nest, some deep moonquakes appear to slip “backwards,” in the opposite direction to other events. We assess whether these changes in slip direction result from a spatial variation in the tectonic stress or from a temporal variation in the tidal stress. To test these two options, we first show that a dominant tectonic stress implies deep moonquakes can only slip in one direction: forwards and backwards, while a dominant tidal stress could allow moonquakes to slip in more directions: any combination of forwards, backwards, left, and right. Then we look for the number of slip directions; we separate the deep moonquake waveforms into slip directions using a principal component analysis technique. We find two slip directions present in the A01 deep moonquake nest. The moonquakes slip in a variety of directions as time evolves. This observation implies that the tidal stresses drive deep moonquakes. Additionally, these results place a new constraint on the magnitude of the tectonic stresses at depth; they must be smaller than the modeled tidal stress of ∼0.1 MPa
    corecore